Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. oral res. (Online) ; 35: e001, 2021. tab, graf
Article in English | LILACS, BBO | ID: biblio-1132750

ABSTRACT

Abstract: Three-point bending test is the most common mechanical test used for quantifying the biomechanical quality of bone tissue and bone healing in small animals. However, there is a lack of standardization for evaluation of bone repair by cortical perforation. The aim of this study was to determine the influence of bone defect position in the proximal metaphysis of rat tibias during load application and different span configuration on the three-point bending test outcomes. Cortical defects with 1.6 mm diameter were created at a standardized location on the medial surface of 60 tibias of male Wistar rats. The animals were euthanized 7 days after surgery. Five specimens were used to create 3D models for finite element analysis using high-resolution micro-CT images. Two spans (6 and 10mm) and three positions of the bone defect in relation to the load application (upward, frontal and downward) were evaluated experimentally (n = 10) and in finite element analysis (n = 5). Maximum load (N) and stiffness (N/mm) were statistically analyzed with 2-way ANOVA and Tukey test (α = 0.05). The results demonstrated that span and orientation of the bone defect significantly influenced the fracture pattern, stress distribution and force versus displacement relation. Therefore, reliable outcome can be achieved creating the bone defect at 8 mm from the extremity of the proximal epiphysis; placing a 10 mm distance span and downward facing defect position to allow a better distribution of stress and more fracture patterns that reached the bone defect target area with less intra-group variability.


Subject(s)
Animals , Male , Rats , Tibia , Mechanical Phenomena , Bone and Bones , Rats, Wistar , Finite Element Analysis
2.
Braz. oral res. (Online) ; 32(supl.1): e76, 2018. graf
Article in English | LILACS | ID: biblio-974469

ABSTRACT

Abstract: Endodontic treatment is a common dental procedure used for treating teeth which the pulp tissue has become irreversibly inflamed or necrotic as a result of the carious process or dental trauma. This procedure which involves mechanical and chemical preparation of root canal may affect several mechanical and physical properties of the tooth structure. The endodontic treatment can also influence the longevity of the rehabilitation of endodontically treated teeth and biomechanics during the oral function. For restoring endodontically treated teeth several factor and clinical decisions should be observed. The decision of the fiberglass post usage and the restorative materials are related to several factors such as the quantity and quality of remaining dental structure, presence of ferrule, post cementation length and final coronal restoration. In this review, the authors will address the effect of the endodontic treatment procedures on canal shape and mechanical properties of a tooth, and also discuss the parameters and the biomechanical principles of root canal treated teeth.


Subject(s)
Humans , Root Canal Filling Materials/therapeutic use , Root Canal Therapy/methods , Post and Core Technique , Tooth, Nonvital/therapy , Dental Restoration, Permanent/methods , Root Canal Therapy/instrumentation , Biomechanical Phenomena , Treatment Outcome , Tooth, Nonvital/pathology , Dental Stress Analysis , Dentin/pathology , Dentin/chemistry , Glass
SELECTION OF CITATIONS
SEARCH DETAIL